1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
| import paddle.fluid as fluid import paddle import numpy as np import matplotlib.pyplot as plt import os
BUF_SIZE = 500 BATCH_SIZE = 20
trainer_reader = paddle.batch(paddle.reader.shuffle(paddle.uci.housing.train()), buf_size=BUF_SIZE) test_reader = paddle.batch(paddle.reader.shuffle(paddle.uci.housing.test()), buf_size=BUF_SIZE)
x = fluid.layers.data(name='x', shape=[13], dtype='float32') y_predict=fluid.layers.fc(input=x,size=1,act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_cost = fluid.layers.mean(cost)
optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001) opts = optimizer.minimize(avg_cost) test_program = fluid.default_main_program().clone(for_test=True)
use_cuda = False place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program())
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
iter=0; iters=[] train_costs=[]
def draw_train_process(iters,train_costs): title="training cost" plt.title(title, fontsize=24) plt.xlabel("iter", fontsize=14) plt.ylabel("cost", fontsize=14) plt.plot(iters, train_costs,color='red',label='training cost') plt.grid() plt.show()
EPOCH_NUM=50 model_save_dir = "/home/aistudio/work/fit_a_line.inference.model"
for pass_id in range(EPOCH_NUM): train_cost = 0 for batch_id, data in enumerate(train_reader()): train_cost = exe.run(program=fluid.default_main_program(), feed=feeder.feed(data), fetch_list=[avg_cost]) if batch_id % 40 == 0: print("Pass:%d, Cost:%0.5f" % (pass_id, train_cost[0][0])) iter=iter+BATCH_SIZE iters.append(iter) train_costs.append(train_cost[0][0]) test_cost = 0 for batch_id, data in enumerate(test_reader()): test_cost= exe.run(program=test_program, feed=feeder.feed(data), fetch_list=[avg_cost]) print('Test:%d, Cost:%0.5f' % (pass_id, test_cost[0][0])) if not os.path.exists(model_save_dir): os.makedirs(model_save_dir) print ('save models to %s' % (model_save_dir)) fluid.io.save_inference_model(model_save_dir, ['x'], [y_predict], exe) draw_train_process(iters,train_costs)
infer_exe = fluid.Executor(place) inference_scope = fluid.core.Scope()
infer_results=[] groud_truths=[]
def draw_infer_result(groud_truths,infer_results): title='Boston' plt.title(title, fontsize=24) x = np.arange(1,20) y = x plt.plot(x, y) plt.xlabel('ground truth', fontsize=14) plt.ylabel('infer result', fontsize=14) plt.scatter(groud_truths, infer_results,color='green',label='training cost') plt.grid() plt.show() with fluid.scope_guard(inference_scope): [inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model( model_save_dir, infer_exe) infer_reader = paddle.batch(paddle.dataset.uci_housing.test(), batch_size=200) test_data = next(infer_reader()) test_x = np.array([data[0] for data in test_data]).astype("float32") test_y= np.array([data[1] for data in test_data]).astype("float32") results = infer_exe.run(inference_program, feed={feed_target_names[0]: np.array(test_x)}, fetch_list=fetch_targets) print("infer results: (House Price)") for idx, val in enumerate(results[0]): print("%d: %.2f" % (idx, val)) infer_results.append(val) print("ground truth:") for idx, val in enumerate(test_y): print("%d: %.2f" % (idx, val)) groud_truths.append(val) draw_infer_result(groud_truths,infer_results)
|